# DEMO - Accelerate Hostpath with Fluid

# Test scenario: ResNet50 model training

  • Machine: V100 x8
  • NFS Server:38037492dc-pol25.cn-shanghai.nas.aliyuncs.com

# Settings

# Hardware

Cluster Alibaba Cloud Kubernetes. v1.16.9-aliyun.1
ECS Instance ECS specifications:ecs.gn6v-c10g1.20xlarge
CPU:82 cores
Distributed Storage NAS

# Software

Software version: 0.18.1-tf1.14.0-torch1.2.0-mxnet1.5.0-py3.6

# Prerequisites

# Known constraints

  • It is not recommended to use the host directory to achieve mount, because this method relies on kubernetes' unexpected mount point maintenance method, which is actually not reliable and may cause data inconsistency.

# Prepare Dataset

  1. Download
$ wget http://imagenet-tar.oss-cn-shanghai.aliyuncs.com/imagenet.tar.gz
  1. Unpack
$ tar -I pigz -xvf imagenet.tar.gz

# NFS dawnbench

# Deploy Dataset

  1. Export Dataset on Your NFS Server

  2. Mount NFS to Host Directory

$ sudo mount -t nfs -o vers=3,nolock,proto=tcp,rsize=1048576,wsize=1048576,hard,timeo=600,retrans=2,noresvport <YOUR_NFS_SERVER>:<YOUR_PATH_TO_DATASET> /mnt/nfs-imagenet
  1. Check Volume
$ mount | grep nfs
<YOUR_NFS_SERVER>:<YOUR_PATH_TO_DATASET> on /mnt/nfs-imagenet type nfs (rw,relatime,vers=3,rsize=1048576,wsize=1048576,namlen=255,hard,nolock,noresvport,proto=tcp,timeo=600,retrans=2,sec=sys,mountaddr=192.168.1.28,mountvers=3,mountport=2049,mountproto=tcp,local_lock=all,addr=192.168.1.28)

NOTE:

修改上述命令中的<YOUR_NFS_SERVER><YOUR_PATH_TO_DATASET>为您的nfs server地址和挂载路径。

# Dawnbench

# 1x8

arena submit mpijob \
--name horovod-v2-nfs-hostpath-1x8-093000 \
--gpus=8 \
--workers=1 \
--working-dir=/horovod-demo/tensorflow-demo/ \
--data-dir /mnt/nfs-imagenet:/data \
-e DATA_DIR=/data/imagenet \
-e num_batch=1000 \
-e datasets_num_private_threads=8 \
--image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/horovod-benchmark-dawnbench-v2:0.18.1-tf1.14.0-torch1.2.0-mxnet1.5.0-py3.6 \
./launch-example.sh 1 8

# 4x8

arena submit mpi \
--name horovod-v2-nfs-hostpath-4x8-092921 \
--gpus=8 \
--workers=4 \ 
--working-dir=/horovod-demo/tensorflow-demo/ \ 
--data-dir /mnt/nfs-imagenet:/data \
-e DATA_DIR=/data/imagenet \
-e num_batch=1000 \
-e datasets_num_private_threads=8 \
--image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/horovod-benchmark-dawnbench-v2:0.18.1-tf1.14.0-torch1.2.0-mxnet1.5.0-py3.6 \
./launch-example.sh 4 8

# Accelerate Hostpath with Fluid

# Deploy Dataset

  1. Follow Previous Steps to Create NFS Volume
  2. Deploy Fluid to Accelerate Hostpath
$ cat <<EOF > dataset.yaml
apiVersion: data.fluid.io/v1alpha1
kind: Dataset
metadata:
  name: imagenet
spec:
  mounts:
  - mountPoint: local:///mnt/nfs-imagenet
    name: imagenet
  nodeAffinity:
    required:
      nodeSelectorTerms:
        - matchExpressions:
            - key: aliyun.accelerator/nvidia_name
              operator: In
              values:
                - Tesla-V100-SXM2-16GB
---
apiVersion: data.fluid.io/v1alpha1
kind: AlluxioRuntime
metadata:
  name: imagenet
spec:
  replicas: 4
  data:
    replicas: 1
  tieredstore:
    levels:
      - mediumtype: MEM
        path: /alluxio/ram 
        quota: 50Gi
        high: "0.99"
        low: "0.8"
EOF

NOTE:

  • mounts.mountPoint通过local://的前缀来指明要挂载的主机目录(e.g. /mnt/nfs-imagenet)
  • spec.replicas和dawnbench测试的worker数量保持一致。比如:单机八卡为1,四机八卡为4
  • nodeSelectorTerms作用是限制在有V100显卡的机器上部署数据集,此处应根据实验环境具体调节
$ kubectl create -f dataset.yaml
  1. Check Volume
$ kubectl get pv,pvc
NAME                        CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM              STORAGECLASS   REASON   AGE
persistentvolume/imagenet   100Gi      RWX            Retain           Bound    default/imagenet                           3h28m

NAME                             STATUS   VOLUME     CAPACITY   ACCESS MODES   STORAGECLASS   AGE
persistentvolumeclaim/imagenet   Bound    imagenet   100Gi      RWX                           3h28m

# dawnbench

# 1x8

arena submit mpi \
--name horovod-v2-nfs-fluid-1x8-093009 \
--gpus=8 \
--workers=1 \
--working-dir=/horovod-demo/tensorflow-demo/ \
--data imagenet:/data \
-e DATA_DIR=/data/imagenet/imagenet \
-e num_batch=1000 \
-e datasets_num_private_threads=8 \
--image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/horovod-benchmark-dawnbench-v2:0.18.1-tf1.14.0-torch1.2.0-mxnet1.5.0-py3.6 \
./launch-example.sh 1 8

# 4x8

arena submit mpi \
--name horovod-v2-nfs-fluid-4x8-092910 \
--gpus=8 \
--workers=4 \
--working-dir=/horovod-demo/tensorflow-demo/ \
--data imagenet:/data \
-e DATA_DIR=/data/imagenet/imagenet \
-e num_batch=1000 \
-e datasets_num_private_threads=8 \
--image=registry.cn-hangzhou.aliyuncs.com/tensorflow-samples/horovod-benchmark-dawnbench-v2:0.18.1-tf1.14.0-torch1.2.0-mxnet1.5.0-py3.6 \
./launch-example.sh 4 8

# Experiment Results

# horovod-1x8

nfs-hostpath fluid (cold) fluid (warm)
raining time 4h20m36s 4h21m56s 4h2m16s
Speed at the 1000 step(images/second) 2426.4 2467.2 8959.7
Speed at the last step(images/second) 8218.1 8219.8 8275.8
steps 56300 56300 56300
Accuracy @ 5 0.9280 0.9288 0.9291

# horovod-4x8

nfs-hostpath fluid (cold) fluid (warm)
训练时间 2h9m21s 1h40m15s 1h29m55s
Speed at the 1000 step(images/second) 3219.2 11067.2 21951.3
Speed at the last step(images/second) 15855.7 20964.4 21869.8
steps 14070 14070 14070
Accuracy @ 5 0.9227 0.9232 0.9228

# 结果分析

From the test results, the Fluid acceleration effect on 1x8 has no obvious effect, but in the scenario of 4x8, the effect is very obvious. In warm data scenario, the training time can be shortened (135-92)/135 = 31%; In cold data scenario, training time can be shortened (135-103) /135 = 23%. This is because NFS bandwidth became a bottleneck under 4x8; Fluid based on Alluxio provides distributed cache data reading capability for P2P data.