
Apache Gearpump
Lightweight Real-time Streaming Engine

About me
● Software Engineer at Intel Big Data Team
● Apache Gearpump committer, awesome-streaming
● Previously MapReduce NativeTask, storm-benchmark
● Shanghai Big Data Streaming Meetup

https://github.com/manuzhang/awesome-streaming
https://github.com/intel-hadoop/storm-benchmark
http://www.meetup.com/Shanghai-Big-Data-Streaming-Meetup/
http://www.meetup.com/Shanghai-Big-Data-Streaming-Meetup/

History of Gearpump
● Conceived at Intel in mid-2014
● Open source project on GitHub from start
● Entered Apache incubation on Mar.8th, 2016
● Current stable release 0.8.0

“The name Gearpump is a reference to the engineering term “Gear Pump”,
which is a super simple pump that consists of only two gears, but is very
powerful at streaming water.”

Yet Another Streaming Engine ?

https://databaseline.wordpress.com/2016/03/12/an-overview-of-apache-streaming-technologies/

https://databaseline.wordpress.com/2016/03/12/an-overview-of-apache-streaming-technologies/
https://databaseline.wordpress.com/2016/03/12/an-overview-of-apache-streaming-technologies/

(source: The Evolution of Massive-Scale Data Processing, slide 4)

https://docs.google.com/presentation/d/10vs2PnjynYMtDpwFsqmSePtMnfJirCkXcHZ1SkwDg-s/edit#slide=id.g63ca2a7cd_0_527

Data Processing Tradeoffs
Correctness

Low Latency Low Cost

(source: The Beam Model, slide 10)

https://docs.google.com/presentation/d/1SHie3nwe-pqmjGum_QDznPr-B_zXCjJ2VBDGdafZme8/edit#slide=id.g12846a6162_0_2072

Billing

Correctness

Low Latency Low Cost

Correctness

Low Latency Low Cost

Live Cost Estimate

Correctness

Low Latency Low Cost

Abuse Detection

Correctness

Low Latency Low Cost

Abuse Detection Backfill

Use case: charge advertisers

Gearpump
Correctness

Low Latency Low Cost

(source: The Beam Model, slide 10)

● Out of order processing
● Exactly Once
● Flow Control
● Fault Tolerance

● Native Streaming
● Message Driven

● Message Driven
● Dynamic DAG

https://docs.google.com/presentation/d/1SHie3nwe-pqmjGum_QDznPr-B_zXCjJ2VBDGdafZme8/edit#slide=id.g12846a6162_0_2072

Overview - DAG

Task

Overview - Application

Executor (JVM)

AppMaster

Overview - Cluster

Woker

Master (HA) Dashboard

Woker

Client
A

AppMaster

Client
B

Overview - Deployment
● Local mode
● Standalone mode
● YARN mode

Overview - API

Processor API

Scala DSL

Java DSL
Storm

Akka Streams Beam API

SAMOA REST

Storm compatibility
● Binary compatibility
● Dynamic DAG
● Support Storm 0.9 and 0.10

Overview - Performance

● 100 byte message
● 48-core, 256 GB memory,

four node cluster

Source Sink

shuffle

Yahoo Streaming Benchmarks

(source: benchmarking streaming computation engines at yahoo)

https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at

Yahoo Streaming Benchmarks

https://github.com/yahoo/streaming-benchmarks/pull/10

https://github.com/yahoo/streaming-benchmarks/pull/10
https://github.com/yahoo/streaming-benchmarks/pull/10

(source: https://www.flickr.com/photos/mike_lao/2588723972)

https://www.flickr.com/photos/mike_lao/2588723972

Demo

Dynamic DAG
Runtime DAG modification without restarting applications

Change parallelism

Change logic
v1

v1

v2

v2

Jar
upload

Message Driven Processing

Message driven processing

Executor (JVM) ● Task is thread safe
● Task is only taking up CPU on

incoming messages
● Scale up to 10000 task on

single four-core machine1

1. Gearpump Task is actually Akka Actor and it is reported ~2.5 million
actors per GB of heap by Akka

http://akka.io/

Out of order processing

(source: The Evolution of Massive-Scale Data Processing, slide 72)

https://docs.google.com/presentation/d/10vs2PnjynYMtDpwFsqmSePtMnfJirCkXcHZ1SkwDg-s/edit#slide=id.g63ca2a7cd_0_527

Event time based window count

7:00 7:01 6:59

Watermark = 7:00

7:02 6:58 6:56 6:51 6:52

Watermark = 6:55 Watermark = 6:50

6:49

([6:50, 6:55], 3) ([6:45, 6:50], 1)Window count

Exactly Once
No lost or duplicate updates to state

0:50

0:45

0:55

0:35

0:40

0:30

0:30

kafka

kafka

Persistent Store

(timestamp, kafka_offset)

(timestamp, state) (timestamp)

local watermark = 0:45

local watermark = 0:30

 global watermark
= min(local watermarks)
= 0:30

Checkpoint

0:50

0:45

0:55

0:40

0:30

0:30

kafka

kafka

Persistent Store

(timestamp, kafka_offset)

(timestamp, state) (timestamp)

local watermark = 0:45

local watermark = 0:30

 global watermark
= min(local watermarks)
= 0:30

Crash

0:30

0:30

0:30

0:30

kafka

kafka

Persistent Store

(0:30, kafka_offset)

(0:30, state) (0:30)

Recover
0:30

0:30

0:30

replay

 local watermark
= global watermark
= 0:30

Example

global watermark (local watermark, kafka offset) (local watermark, state)

0:00 (0:10, 1) (0:00, 0)

0:10 (0:20, 2) (0:10, 1)

0:20 (0:30, 3) (0:20, 2)

0:30 (0:40, 4) (0:30, 3)

checkpoint

crash

Example

global watermark (local watermark, kafka offset) (local watermark, state)

0:30 (0:30, 3) (0:30, 3)

0:30 (0:40, 4) (0:30, 3)

0:40 (0:50, 5) (0:40, 4)

0:50 (1:00, 6) (0:50, 5)

recover

checkpoint

Flow Control

Without flow control

Fast
Task

Slow
Task

Fast
Task

OOM

Performant message track

A B100101102200201202

100

A B200201202300301302

200

AckRequestAckRequest

AckRequest AckRequest

Ack

Ack

Received 100 messages

Received 200 messages

Flow control

Fast
Task

Slow
Task

Fast
Task

No ack, stop sending

Back-pressure

Flow control

Slow
Task

Slow
Task

Fast
Task

No ack, stop sending

Back-pressure

Flow control

Slow
Task

Slow
Task

Fast
Task

No ack, stop sending

Back-pressure

Fault Tolerance

Master HA
● Conflict-free Replicated Data Type (CRDT) for state consistency

Leader

Follower Follower

syn
c

sync

sync

Resource isolation
● Linux CGroup
● Configurable CPU resource per executor (JVM)
● Configurable executor number per application

References
1. An Introduction to the Beam Model
2. The Evolution of Massive-Scale Data Processing
3. gearpump.apache.org
4. akka.io
5. http://www.slideshare.net/SeanZhong/strata-singapore-gearpumpreal-

time-dagprocessing-with-akka-at-scale

https://docs.google.com/presentation/d/1SHie3nwe-pqmjGum_QDznPr-B_zXCjJ2VBDGdafZme8/edit#slide=id.g12846a6162_0_2072
https://docs.google.com/presentation/d/1SHie3nwe-pqmjGum_QDznPr-B_zXCjJ2VBDGdafZme8/edit#slide=id.g12846a6162_0_2072
https://docs.google.com/presentation/d/10vs2PnjynYMtDpwFsqmSePtMnfJirCkXcHZ1SkwDg-s/edit#slide=id.gd44d9957e_0_3247
https://docs.google.com/presentation/d/10vs2PnjynYMtDpwFsqmSePtMnfJirCkXcHZ1SkwDg-s/edit#slide=id.gd44d9957e_0_3247
http://gearpump.apache.org
http://gearpump.apache.org
http://akka.io/
http://akka.io/

Q & A

Backup slides

Supervisor hierarchy
Master

AppMaster

Executor

Task

AppMaster

Executor Executor

Task Task Task

watch

Supervisor hierarchy
Master

AppMaster

Executor

Task

AppMaster

Executor Executor

Task Task Task

watch

report failure

report failure

